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The boundary layer flow and heat transfer of a viscous fluid over a nonlinear permeable shrinking sheet in a 
thermally stratified environment is considered. The sheet is assumed to shrink in its own plane with an arbitrary 
power-law velocity proportional to the distance from the stagnation point. The governing differential equations 
are first transformed into ordinary differential equations by introducing a new similarity transformation. This is 
different from the transform commonly used in the literature in that it permits numerical solutions even for 
asymptotically large values of the power-law index, m. The coupled non-linear boundary value problem is solved 
numerically by an implicit finite difference scheme known as the Keller- Box method. Numerical computations 
are performed for a wide variety of power-law parameters (1 < m < 100,000) so as to capture the effects of the 
thermally stratified environment on the velocity and temperature fields. The numerical solutions are presented 
through a number of graphs and tables. Numerical results for the skin-friction coefficient and the Nusselt number 
are tabulated for various values of the pertinent parameters. 
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1. Introduction 
 
 The study of a two-dimensional boundary layer flow and heat transfer induced by a stretching 
boundary has received considerable interest because of its extensive applications in manufacturing processes 
(Altan and Gegel, 1979; Fischer, 1976; Klein and Tadmor, 1970). Such flows have promising applications in 
industries, for example, in the extrusion of polymer sheet from a die or in the drawing of plastic films. 
  During the manufacture of these sheets, the melt issues from a slit and is subsequently stretched to 
achieve the desired thickness. The mechanical properties of the final product strictly depend on the stretching 
and the cooling rates in the process. In these situations, it is very important to control the drag and the heat 
flux for better product quality. The physical situation was recognized as a backward boundary layer problem 
by Sakiadis (1961). He was the first, among others, to investigate the flow behavior for this class of 
boundary layer problems. In his pioneering paper, solutions were obtained to the boundary layer flows on 
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continuous moving surfaces which are substantially different from those of boundary layer flows on 
stationary surfaces. The thermal behavior of the problem was studied by Erickson et al. (1966) using finite 
difference and integral methods, and experimentally verified by Tsou et al. (1967). Crane (1970) extended 
the work of Sakiadis (1961) to the flow caused by an elastic sheet moving in its own plane with a velocity 
varying linearly with the distance from a fixed point. Thereafter various aspects of the above boundary layer 
problem on continuous moving surface were considered by many researchers (Grubka and Bobba, 1985), 
(Vleggar, 1977), (Soundalgekar and Murthy, 1980), (Gupta and Gupta, 1977), (Chen and Char, 1988), (Ali, 
1994). A new solution branch of both impermeable and permeable stretching sheet was found recently by 
Liao, 2005; 2007). This indicates that multiple solutions for the stretching surface problems are possible 
under certain conditions.  
 All the above investigators restricted their analyses to flow induced by a linear stretching sheet. 
However, (Gupta and Gupta, 1977) have noted that stretching of the sheet may not necessarily be linear (they 
find applications in polymer and electrochemical industries); the concept of linear stretching is further 
extended to non-linear stretching sheet ,n

wu bx n 0� �  by many authors. To mention a few, (Vajravelu, 
2001) studied the boundary-layer flow of a viscous fluid over a nonlinearly stretching sheet and obtained the 
numerical solution. Cortell (2007) extended the work of Vajravelu (2001) to obtain more realistic solutions 
on the flow and heat transfer over a non-isothermal stretching sheet in the presence of viscous dissipation.  
Sajid et al. (2008) analyzed the axisymmetric flow over a non-linearly stretching sheet. Mathematical 
properties of such physical systems have been recently considered in Akyildiz et al., (2010); Van Gorder and 
Vajravelu, (2010a; 2010b; 2011); Mahapatra et al, (2010). 
 The physical situation of a stretching sheet is one of the possible cases. Another physical 
phenomenon is the flow of an incompressible viscous fluid over a shrinking sheet. Such a situation occurs in 
the flow over a rising shrinking balloon. From the consideration of continuity, Crane’s stretching sheet 
solution induces far field suction toward the sheet, while flow over a shrinking sheet would give rise to a 
velocity away from the sheet. From a physical point of view, vorticity generated at the shrinking sheet is not 
confined within a boundary layer and a steady flow is not possible unless adequate suction is applied at the 
surface. A paper published by Miklavcic and Wang (2006) investigates two-dimensional and axisymmetric 
viscous flows induced by a shrinking sheet in the presence of uniform surface suction. Fang (2008) analyzed 
the boundary layer flow of a continuously shrinking sheet with a power-law surface velocity. The shrinking 
sheet problem was extended to other types of fluids by Hayat et al. (2007), Sajid et al. (2008). For the flow 
induced by a shrinking sheet, it is essentially a backward flow discussed by Glodstein (1965); for a backward 
flow configuration the fluid loses any memory of the perturbation induced by the leading ledge, say the slot. 
 This flow has quite distinct physical phenomena from the forward stretching flow. Available 
literature on the flow over a stretching/ shrinking sheet (Sajid and Hayat, 2009; Aman and Ishak, 2010; 
Cortell, 2007; Hayat et al., 2007; Sajid et al., 2008) reveals that not much work has been carried out for 
viscous flow and heat transfer over a non-linear permeable shrinking sheet in a thermally stratified 
environment. 
 In the present paper, we extend the shrinking sheet problem to a more general situation with a power 
law velocity of the permeable sheet shrinking into the slot. This is a generalization of Henkes and 
Hoogendoorn (1989) to the study of the viscous fluid flow and heat transfer with an arbitrary power-law 
permeable shrinking sheet. Here the momentum and energy equations are coupled nonlinear partial 
differential equations. These coupled nonlinear partial differential equations are reduced to couple nonlinear 
ordinary differential equations by a similarity transformation and are solved numerically by an implicit finite 
difference method known as the Keller box method. A point of novelty here is that our similarity transform 
differs from those commonly found in the literature for nonlinear stretching or shrinking sheets (see, for 
instance Ali, 1994; Liao, 2005; 2007) as our transformation permits numerical solutions for arbitrarily large 
values of the power-law shrinking parameter. Thus, we are able to obtain similarity solutions for a wider 
variety of power-law shrinking situations than previously possible. 
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2. Mathematical formulation 
 
 Consider a laminar steady two-dimensional viscous flow over a continuously shrinking sheet in a 
quiescent fluid. The sheet shrinks in its own plane with a velocity proportional to the power of distance from 
the origin. The sheet shrinking-velocity is assumed to be � �wu x� where � �wu x  is a positive function for all 

values of x and the mass transfer velocity at the wall is � �w wv v x� . The x-axis runs along the shrinking 
surface in the direction opposite to the sheet motion and y-axis is perpendicular to it. The governing 
momentum and energy equations based on the usual boundary layer assumption can be written as (in the 
absence of viscous dissipation)  
 

  ,u v 0
x y

� �
� �

� �
                                                                         (2.1) 

 

  ,
2

2
u u uu v v
x y y

� � �
� �

� � �
                                                         (2.2) 

 

  
2

2
T T Tu v
x y y

� � �
� � 	

� � �
                                            (2.3) 

 
where andu v  are the velocity components in the andx y  directions, respectively. T is the temperature, p 
the fluid pressure, 
  the kinematic viscosity, and 	 is the thermal diffusivity of the fluid. In addition, since 
we neglected the dissipation term in the energy equation, the current analysis is applicable to low Eckert 
number flows. The appropriate boundary conditions for the problem are 
 
  � � � � � �, , at ,w w wu u x v v x T T x y 0� � � � �                                    (2.4a) 
 
  � � as .u 0 T T x y�� � ��        (2.4b) 
 
 In Eqs (2.4) the negative sign indicates the shrinking sheet and � �wv x  is the mass flux velocity, with 

� �wv x 0   for suction and � �wv x 0�  for blowing or injection, respectively. The subscript w denotes the 

conditions at the wall. Here, � � � � � �, andw wu x T x T x�  are functions of x (and are assumed to vary in powers 
of x, the distance from the slot) and are defined as follows (for details see Henkes and Hoogendoorn, 1989; 
Kulkarni et al., 1987) 
 
  � � � � � � � � � �, ,m m

w w w cu x U Mx N T x n 1 T Mx N T� � � � � � �  
(2.5) 

  � � � �m
cT x n T Mx N T� � � � �  

  
where cT  is a constant, m  is a power law exponent parameter for the shrinking sheet and is positive , n  is 
the wall temperature parameter describing the environment temperature for n 0�  and fixed wall temperature 
for n 1� � , M and N are (positive and non-negative, respectively) constants. The temperature field can be 
rewritten as 
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  � �� � ,m
cT n T T� � � � � � �  (2.6) 

 
and the transformed coordinates in the above expression are 
 

  ,    and .

1 m 1
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                        (2.7) 

 
 A stream function is introduced as 
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which defines the velocity components andu v as 
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so that we can write 
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1 m 1
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where wf  is a constant ( wf 0�  for suction and wf 0  for injection). Substitution of these transformation 
expressions into Eqs (2.2)-(2.3) yields the following coupled, nonlinear ordinary differential Eqs for andf �  
 

  ,21 1f 1 f f f 0
2 m

� �� ���� �� �� � � �� ��  � �! "
     (2.10) 

 

  � �Pr ,1 11 f n f 0
2 m

� �� ��� � �� � � � � � � �� ��  � �! "
            (2.11) 

 
subject to the boundary conditions 
 
  � � � � � �, ,wf 0 f f 0 1 0 1�� � � � �     (2.12a) 
 
  � � � �,      as    f 0 0� � � � � � � ��     (2.12b) 
 
where wf  is the lateral mass transfer parameter showing the strength of the mass at the shrinking sheet. 
 From these equations, it is clear that the solutions to Eqs (2.10)–(2.12) should be amenable to 
numerical analysis for any positive value of m. This is in contrast to the standard transformations for 
nonlinearly stretching sheets in which the dependence on m is non-vanishing as m grows large (again, see 
Eqs (2.13)-(3.2). 
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 We have that n 0�  for the non-stratified environment and n 1� �  for the fixed wall temperature 
distribution. The environment is stably stratified for dT dx 0� �  or mMn 0� . Hence, if andm n  are of the 
same sign the environment is stably stratified. The physical quantities of interest are the skin friction 
coefficient fC  and the Nusselt number Nu� , which are defined by 
 

  
� � � �

, Nuw w
f 2 2

w ww w at y 0 at y 0

q1 u TC k
y k T T k T T yu u �

� �� �

� � � �# �� � �
� � $ � � �� � � �� � � �% % � � � �

. (2.13a) 

 
 Using Eqs (2.6)-(2.9), we obtain 
 

  � � � � � �
Re

, Re Nu

1
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�
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� �
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�� �� � ��� �
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   (2.13b) 

 

where Re
m 1

wU
v

�

�
�

�  is the local Reynolds number.  

 In the case of a linearly shrinking sheet, for the value of wf 2�  it is known that the solution to 

Eq.(2.10) reduces to � �f 1 e��� � �  (see, e.g., Miklavcic and Wang, 2006). Note that when wf 2  we have 
no exponential decaying solutions (see, for instance, Van Gorder and Vajravelu, 2009; Fang and Zhang, 
2010) for the linearly shrinking sheet problem while when wf 2�  two solutions are possible. Often, one 
solution is physically meaningful while the other solution is non-physical. We find that such limitations 
appear in the case of a nonlinearly shrinking sheet as well, and thus we must restrict our attention to the case 
of suction ( wf 0� ). 
 The solutions obtained numerically are the physically meaningful solutions, and we do not discuss 
any additional non-physical solutions in the present paper. 
 
3. Stability and numerical method 
 
 When computing numerical solutions, we would like to ensure that the numerical solutions converge 
to the true physically meaningful solution to the problem. This is where stability of the system can be useful. 
Observe that Eqs (2.10) – (2.11) may be written as a five-dimensional dynamical system 
 
  1 2Z Z� � , 
  
  2 3Z Z� � , 
  

  2
3 2 1 3

1 1Z Z 1 Z Z
2 m
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� �

, (3.1) 

  
  4 5Z Z� � , 
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� �* +
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 Now, the boundary conditions Eqs (2.12a)-(2.12b) imply that 2Z 0�  and 4Z 0�  (and also 

3Z 0�  and 5Z 0� ) as ���  while 1Z �,  (where ,  denotes the boundary layer thickness) as ��� . 
The Jacobian for Eq.(3.1), evaluated at the equilibrium � �, , , ,0 0 0 0,  reads 
 

  

Pr

0 1 0 0 0
0 0 1 0 0

10 0 1 0 0
DZ 2 m

0 0 0 0 1
10 n 0 0 1

2 m

� �
�  
�  
�  , � �� ��  � �� � ��  
�  
�  

, � ��  � �� ��  � �! "

 ,      (3.2) 

 

and the eigenvalues are 0 (multiplicity three) and 11
2 m
, � �� �� �
� �

 (multiplicity two). Taking boundary 

conditions into account, the solution then scales as 
  

  � �exp1 1 2
1Z A A 1

2 m
� �, � �� � � � � � ,� �� �

� �� �
� ,       (3.3) 

 
for large � . This shows that the solutions are stable for all m > 0 and, furthermore, that the decay rate is 

exponential and may be given by 11
2 m
, � �� �� �
� �

. As we shall see in the following section, this manner of decay 

is indeed confirmed by the obtained numerical solutions. 
 Equations (2.10) and (2.11) are non-linear coupled ordinary differential equations of third-order and 
second-order, respectively. Exact analytical solutions are not possible for the complete set of Eqs (2.10) and 
(2.11) and therefore we have used an efficient numerical method with an implicit finite difference scheme 
known as the Keller-Box method (Brandshaw and Cebeci, 1984; Keller, 1992; Prasad et al., 2010). This 
method is unconditionally stable and has a second order accuracy with arbitrary spacing. First, we write 
the transformed differential equations and the boundary conditions in terms of first order system, which is 
then converted to a set of finite difference equations using central differences. Then the non-linear 
algebraic equations are linearized by Newton’s method and the resulting linear system of equations is then 
solved by block tri-diagonal elimination technique. For the sake of brevity, the details of the numerical 
solution procedure are not presented here. For numerical calculations, a uniform step size of .0 01�� �  is 

found to be satisfactory and the shooting error was controlled with a relative error tolerance of 610�  in all 
the cases.  
 
4. Results and discussion 
 
 Upon employing the Keller-Box method as discussed in Section 3, we were able to obtain numerical 
solutions to the boundary value problem in Eqs (2.10)–(2.12). Importantly, we were able to deduce the 
behavior of solutions for arbitrarily large values of the power-law shrinking parameter m. We find that as m 
increases, the magnitudes of both the skin friction and Nusselt number decrease (see Tabs 1 and 2, 
respectively). 
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 Meanwhile, from Figs 1 and 2 we see that an increase in the power-law shrinking parameter m 
results in a smoothing of the velocity components, as both profiles for f  and f �  are moderated due to the 
increase in m. The temperature profiles, shown in Figs 3 and 4, also show that an increase in the power-law 
shrinking parameter will tend to moderate the temperature differences over the problem domain: As the 
power-law shrinking parameter increases, the temperature spike witnessed near the origin is mitigated as 
shown in Fig.3.  
 In Fig.4, we see that one culprit behind the temperature spikes near the origin is the parameter n, 
which is a measure of the difference in the temperature of the ambient fluid and of the wall. Hence, in 
situations where the wall temperature parameter n is sufficiently different from zero, a manner of nonlinear 
stretching may be considered a practical means by which to reduce the temperature variation over the 
problem domain. Another feature of note is that the suction from the surface can drastically influence the 
temperature profiles. This is best shown in Fig.3, where an increase in the suction parameter results in an 
amplified temperature spike. Nonlinearly shrinking the sheet offers one method of controlling such 
temperature spikes. To see how the influence of the power-law stretching parameter, the wall temperature 
parameter and the suction parameter interact to modify the Nusselt number, see Tab.3. 
 
Table 1. Values of skin friction � �f 0��

 for different values of m and fw. 
 

m fw= 4 fw= 4.5 fw= 5

1 -1.038378 -2.228009 -3.798063

5 -0.822047 -1.710771 -2.899753

10 -0.612710 -1.377775 -2.396709

102 -0.417008 -1.077373 -1.947628

103 -0.396991 -1.047454 -1.903221

105 -0.394984 -1.044463 -1.898786

 
Table 2. Values of wall temperature gradient � �0��  for different values of m and fw with n = -0.2, Pr = 1.5. 

 
m fw= 4 fw=4.5 fw= 5

1 -28.38288 -34.753307 -41.363628

5 -8.790844 -11.587538 -14.120668

10 -7.191096 -9.891197 -12.384751

102 -5.756381 -8.305325 -10.740927

103 -5.614634 -8.143814 -10.571367

105 -5.600486 -8.127637 -10.554356
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Fig.1. Horizontal velocity profiles for different values of m and .wf  
 

 
Fig.2. Transverse velocity profiles for different values of m and .wf  
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Fig.3. Temperature profiles for different values of m and wf  with Pr 1� and n 0� . 
 

 
 

Fig.4. Temperature profiles for different values of m and n with Pr 3�  and wf 4� . 
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Table 3. Values of wall temperature gradient � �0��  for different values of the parameters. 

 
fw n Pr =1.5 Pr = 2 

m =1 m =10 m =105 m =1 m =10 m =105

4 -0.2 -28.382881 -7.191096 -5.600486 -29.106968 -9.289488 -7.696641
-0.1 -16.856670 -4.455944 -3.488916 -18.244694 -6.257577 -5.221037
0.0 -5.330457 -1.720793 -1.377345 -7.382421 -3.225667 -2.745433
0.1 6.195755 1.014359 0.734226 3.479852 -0.193757 -0.269829
0.2 17.721968 3.749511 2.845796 14.342126 2.838153 2.205775

4.5 -0.2 -34.753307 -9.891190 -8.127637 -35.242165 -11.85285 -10.230711
-0.1 -20.434395 -6.007672 -4.909124 -21.830320 -7.845269 -6.765775
0.0 -6.115480 -2.124155 -1.690612 -8.418475 -3.837679 -3.300839
0.1 8.203434 1.759362 1.527900 4.993371 0.169912 0.164097
0.2 22.522348 5.642879 4.746412 18.405216 4.177502 3.629033

5 -0.2 -41.363628 -12.384751 -10.554356 -41.606392 -14.142026 -12.496558
-0.1 -24.124619 -7.456148 -6.291972 -25.523958 -9.283492 -8.168881
0.0 -6.885610 -2.527544 -2.029589 -9.441525 -4.424958 -3.841204
0.1 10.353399 2.401059 2.232795 6.640907 0.433576 0.403647
0.2 27.592407 7.329663 6.495178 22.723341 5.292110 4.814149

 
 The influence of suction on the velocity profiles is likewise more severe as the suction parameter 
increases in value. For large values of the suction parameters, the change in velocity profiles over the domain 
is much more drastic (see Fig.1). However, we again note that nonlinearly shrinking the sheet offers a way to 
control the magnitude of such velocity changes due to suction. We remark again that injection will in general 
not permit the existence of solutions to the self-similar problem considered here, as the introduction of mass 
will destroy similarity for this particular flow problem for a shrinking sheet. This is in contrast to the 
corresponding problem for the stretching sheet, where such mass injection still can be accounted for in the 
self-similar formulation. 
 While the solutions presented here are numerical in nature, note that it may be possible to construct 
analytical perturbation solutions for the problem in the asymptotic regime m 1�� . One would still need to 
consider perturbation about a nonlinear, rather than a linear, operator, but methods of inverting nonlinear 
operators exist in the literature (see, e. g., Van Gorder and Sweet, 2010; Van Gorder, 2011). Understanding 
the analytical behavior at intermediate to large values of m would be interesting and could lead to a better 
understanding of the requirements for the existence and uniqueness of solutions, which we do not address 
here. 
 
Nomenclature 
 

 f  – similarity stream function 
 f �  – the first derivative of f  with respect to �  
 f ��  – the second derivative of f  with respect to �  
 f ���  – the third derivative of f  with respect to �  
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 wf  – mass transfer parameter at the sheet 
,M N  – coefficients defined in Eq.(2.5) 

 m  – power law exponent parameter  
 n  – wall temperature parameter  
Nu  – Nusselt number 
 Pr  – Prandtl number 
 wq  – heat flux from the surface 
Re�  – the local Reynolds number 
 T  – temperature 
 cT  – constant defined in Eq.(2.5) 
 wT  – temperature of the plate 
 T�  – ambient temperature 

wU  – a constant  
 u  – fluid velocity in the x-direction 
 v  – fluid velocity in the y-direction 
 x  – coordinate along the shrinking sheet  
 y – coordinate perpendicular to the x-direction 

 	  – effective thermal diffusivity of the fluid 
T�  – characteristic temperature difference 

��  – grid size in the �  direction 
 �  – similarity variable 
 �  – transformed x-co ordinate Mx N�  
 �  – nondimensional temperature 
 ��  – the first derivative of �  with respect to �  
 
  – kinematic viscosity 
 %  – density 
 �  – stream function 
 w#  – shear stress at the surface 
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